Timing Analysis of Synchronous Programs using WCRT Algebra

Author:

Wang Jiajie1,Mendler Michael2,Roop Partha1,Bodin Bruno3

Affiliation:

1. University of Auckland, Auckland, New Zealand

2. University of Bamberg

3. University of Edinburgh

Abstract

Synchronous languages are ideal for designing safety-critical systems. Static Worst-Case Reaction Time (WCRT) analysis is an essential component in the design flow that ensures the real-time requirements are met. There are a few approaches for WCRT analysis, and the most versatile of all is explicit path enumeration. However, as synchronous programs are highly concurrent, techniques based on this approach, such as model checking, suffer from state explosion as the number of threads increases. One observation on this problem is that these existing techniques analyse the program by enumerating a functionally equivalent automaton while WCRT is a non-functional property. This mismatch potentially causes algorithm-induced state explosion. In this paper, we propose a WCRT analysis technique based on the notion of timing equivalence, expressed using WCRT algebra. WCRT algebra can effectively capture the timing behaviour of a synchronous program by converting its intermediate representation Timed Concurrent Control Flow Graph (TCCFG) into a Tick Cost Automaton (TCA), a minimal automaton that is timing equivalent to the original program. Then the WCRT is computed over the TCA. We have implemented our approach and benchmarked it against state-of-the-art WCRT analysis techniques. The results show that the WCRT algebra is 3.5 times faster on average than the fastest published technique.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3