Algorithm 928

Author:

Rios Joseph1

Affiliation:

1. National Aeronautics and Space Administration, Moffett Field, CA

Abstract

Dantzig--Wolfe Decomposition is recognized as a powerful, algorithmic tool for solving linear programs of block-angular form. While use of the approach has been reported in a wide variety of domains, there has not been a general implementation of Dantzig--Wolfe decomposition available. This article describes an open-source implementation of the algorithm. It is general in the sense that any properly decomposed linear program can be provided to the software for solving. While the original description of the algorithm was motivated by its reduced memory usage, modern computers can also take advantage of the algorithm's inherent parallelism. This implementation is parallel and built upon the POSIX threads (pthreads) library. Some computational results are provided to motivate use of such parallel solvers, as this implementation outperforms state-of-the-art commercial solvers in terms of wall-clock runtime by an order of magnitude or more on several problem instances.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference23 articles.

1. Branch-and-Price: Column Generation for Solving Huge Integer Programs

2. Bertsimas D. and Tsitsiklis J. N. 1997. Introduction to Linear Optimization. Athena Scientific Belmont MA. Bertsimas D. and Tsitsiklis J. N. 1997. Introduction to Linear Optimization. Athena Scientific Belmont MA.

3. Decomposing Matrices into Blocks

4. Decomposition Principle for Linear Programs

5. Crew pairing at Air France

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stackelberg Security Games: Models, Applications and Computational Aspects;Journal of Telecommunications and Information Technology;2016-09-30

2. Massively Parallel Optimal Solution to the Nationwide Traffic Flow Management Problem;2013 Aviation Technology, Integration, and Operations Conference;2013-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3