On sorting and load balancing on GPUs

Author:

Cederman Daniel1,Tsigas Philippas1

Affiliation:

1. Chalmers University of Technology, Göteborg, Sweden

Abstract

In this paper we take a look at GPU-Quicksort, an efficient Quicksort algorithm suitable for the highly parallel multi-core graphics processors. Quicksort had previously been considered an inefficient sorting solution for graphics processors, but GPU-Quicksort often performs better than the fastest known sorting implementations for graphics processors, such as radix and bitonic sort. Quicksort can thus be seen as a viable alternative for sorting large quantities of data on graphics processors. We also take look at a comparison of different load balancing schemes. To get maximum performance on the many-core graphics processors it is important to have an even balance of the workload so that all processing units contribute equally to the task at hand. This can be hard to achieve when the cost of a task is not known beforehand and when new sub-tasks are created dynamically during execution. With the recent advent of scatter operations and atomic hardware primitives it is now possible to bring some of the more elaborate dynamic load balancing schemes from the conventional SMP systems domain to the graphics processor domain.

Publisher

Association for Computing Machinery (ACM)

Reference14 articles.

1. Thread scheduling for multiprogrammed multiprocessors

2. A Practical Quicksort Algorithm for Graphics Processors

3. D. Cederman and P. Tsigas. GPU Quicksort Library. www.cs.chalmers.se/¿dcs/gpuqsortdcs.html December 2007. D. Cederman and P. Tsigas. GPU Quicksort Library. www.cs.chalmers.se/¿dcs/gpuqsortdcs.html December 2007.

4. N. CUDA. www.nvidia.com/cuda. N. CUDA. www.nvidia.com/cuda.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Integer Sorting on Multicores;Parallel Processing Letters;2018-12

2. A comparison-free sorting algorithm on CPUs and GPUs;The Journal of Supercomputing;2018-08-30

3. GPU sorting algorithms;Advances in GPU Research and Practice;2017

4. The All‐Pair Shortest‐Path Problem in Shared‐Memory Heterogeneous Systems;High‐Performance Computing on Complex Environments;2014-04-18

5. StreamScan;ACM SIGPLAN Notices;2013-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3