Collaborative Local-Global Learning for Temporal Action Proposal

Author:

Zhu Yisheng1ORCID,Han Hu2,Liu Guangcan1ORCID,Liu Qingshan1

Affiliation:

1. Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract

Temporal action proposal generation is an essential and challenging task in video understanding, which aims to locate the temporal intervals that likely contain the actions of interest. Although great progress has been made, the problem is still far from being well solved. In particular, prevalent methods can handle well only the local dependencies (i.e., short-term dependencies) among adjacent frames but are generally powerless in dealing with the global dependencies (i.e., long-term dependencies) between distant frames. To tackle this issue, we propose CLGNet, a novel Collaborative Local-Global Learning Network for temporal action proposal. The majority of CLGNet is an integration of Temporal Convolution Network and Bidirectional Long Short-Term Memory, in which Temporal Convolution Network is responsible for local dependencies while Bidirectional Long Short-Term Memory takes charge of handling the global dependencies. Furthermore, an attention mechanism called the background suppression module is designed to guide our model to focus more on the actions. Extensive experiments on two benchmark datasets, THUMOS’14 and ActivityNet-1.3, show that the proposed method can outperform state-of-the-art methods, demonstrating the strong capability of modeling the actions with varying temporal durations.

Funder

New Generation AI Major Project of Ministry of Science and Technology of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perceiving Actions via Temporal Video Frame Pairs;ACM Transactions on Intelligent Systems and Technology;2024-05-17

2. Decoupled spatio-temporal grouping transformer for skeleton-based action recognition;The Visual Computer;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3