Optimal Bloom Filters and Adaptive Merging for LSM-Trees

Author:

Dayan Niv1,Athanassoulis Manos1ORCID,Idreos Stratos1

Affiliation:

1. Harvard University, USA

Abstract

In this article, we show that key-value stores backed by a log-structured merge-tree (LSM-tree) exhibit an intrinsic tradeoff between lookup cost, update cost, and main memory footprint, yet all existing designs expose a suboptimal and difficult to tune tradeoff among these metrics. We pinpoint the problem to the fact that modern key-value stores suboptimally co-tune the merge policy, the buffer size, and the Bloom filters’ false-positive rates across the LSM-tree’s different levels. We present Monkey, an LSM-tree based key-value store that strikes the optimal balance between the costs of updates and lookups with any given main memory budget. The core insight is that worst-case lookup cost is proportional to the sum of the false-positive rates of the Bloom filters across all levels of the LSM-tree. Contrary to state-of-the-art key-value stores that assign a fixed number of bits-per-element to all Bloom filters, Monkey allocates memory to filters across different levels so as to minimize the sum of their false-positive rates. We show analytically that Monkey reduces the asymptotic complexity of the worst-case lookup I/O cost, and we verify empirically using an implementation on top of RocksDB that Monkey reduces lookup latency by an increasing margin as the data volume grows (50--80% for the data sizes we experimented with). Furthermore, we map the design space onto a closed-form model that enables adapting the merging frequency and memory allocation to strike the best tradeoff among lookup cost, update cost and main memory, depending on the workload (proportion of lookups and updates), the dataset (number and size of entries), and the underlying hardware (main memory available, disk vs. flash). We show how to use this model to answer what-if design questions about how changes in environmental parameters impact performance and how to adapt the design of the key-value store for optimal performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards flexibility and robustness of LSM trees;The VLDB Journal;2024-01-11

2. Practical Dynamic Extension for Sampling Indexes;Proceedings of the ACM on Management of Data;2023-12-08

3. Two-layer partitioned and deletable deep bloom filter for large-scale membership query;Information Systems;2023-10

4. Improving LSM-Tree Based Key-Value Stores With Fine-Grained Compaction Mechanism;IEEE Transactions on Cloud Computing;2023-10

5. Enabling Timely and Persistent Deletion in LSM-Engines;ACM Transactions on Database Systems;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3