Affiliation:
1. MPI for Intelligent Systems and ETH Zürich, Switzerland
2. MPI for Security and Privacy, Germany
3. MPI for Intelligent Systems, Germany
4. Saarland University, Germany
Abstract
Machine learning is increasingly used to inform decision making in sensitive situations where decisions have consequential effects on individuals’ lives. In these settings, in addition to requiring models to be accurate and robust, socially relevant values such as fairness, privacy, accountability, and explainability play an important role in the adoption and impact of said technologies. In this work, we focus on
algorithmic recourse
, which is concerned with providing explanations and recommendations to individuals who are unfavorably treated by automated decision-making systems. We first perform an extensive literature review, and align the efforts of many authors by presenting unified definitions, formulations, and solutions to recourse. Then, we provide an overview of the prospective research directions toward which the community may engage, challenging existing assumptions and making explicit connections to other ethical challenges such as security, privacy, and fairness.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献