Automated and Efficient Test-Generation for Grid-Based Multiagent Systems: Comparing Random Input Filtering versus Constraint Solving

Author:

Entekhabi Sina1ORCID,Mostowski Wojciech1ORCID,Mousavi Mohammad Reza2ORCID

Affiliation:

1. Halmstad University, Sweden

2. King’s College London, UK

Abstract

Automatic generation of random test inputs is an approach that can alleviate the challenges of manual test case design. However, random test cases may be ineffective in fault detection and increase testing cost, especially in systems where test execution is resource- and time-consuming. To remedy this, the domain knowledge of test engineers can be exploited to select potentially effective test cases. To this end, test selection constraints suggested by domain experts can be utilized either for filtering randomly generated test inputs or for direct generation of inputs using constraint solvers. In this article, we propose a domain specific language (DSL) for formalizing locality-based test selection constraints of autonomous agents and discuss the impact of test selection filters, specified in our DSL, on randomly generated test cases. We study and compare the performance of filtering and constraint solving approaches in generating selective test cases for different test scenario parameters and discuss the role of these parameters in test generation performance. Through our study, we provide criteria for suitability of the random data filtering approach versus the constraint solving one under the varying size and complexity of our testing problem. We formulate the corresponding research questions and answer them by designing and conducting experiments using QuickCheck for random test data generation with filtering and Z3 for constraint solving. Our observations and statistical analysis indicate that applying filters can significantly improve test efficiency of randomly generated test cases. Furthermore, we observe that test scenario parameters affect the performance of the filtering and constraint solving approaches differently. In particular, our results indicate that the two approaches have complementary strengths: random generation and filtering works best for large agent numbers and long paths, while its performance degrades in the larger grid sizes and more strict constraints. On the contrary, constraint solving has a robust performance for large grid sizes and strict constraints, while its performance degrades with more agents and long paths.

Funder

Knowledge Foundation (KKS) in the framework of “Safety of Connected Intelligent Vehicles in Smart Cities – SafeSmart” project

UKRI Trustworthy Autonomous Systems Node in Verifiability

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference48 articles.

1. Fast Sampling of Perfectly Uniform Satisfying Assignments

2. Reusing constraint proofs in program analysis

3. Testing telecoms software with quviq QuickCheck

4. Digital Twins Are Not Monozygotic – Cross-Replicating ADAS Testing in Two Industry-Grade Automotive Simulators

5. Oliver Carsten Natasha Merat Wiel Janssen Emma Johansson Mark Fowkes and Karel Brookhuis. 2005. Human Machine Interaction and Safety of Traffic in Europe . HASTE Final Report European Commission.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3