A Reconfigurable Architecture for the Detection of Strongly Connected Components

Author:

Attia Osama G.1ORCID,Townsend Kevin R.1,Jones Phillip H.1,Zambreno Joseph1

Affiliation:

1. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA

Abstract

The Strongly Connected Components (SCCs) detection algorithm serves as a keystone for many graph analysis applications. The SCC execution time for large-scale graphs, as with many other graph algorithms, is dominated by memory latency. In this article, we investigate the design of a parallel hardware architecture for the detection of SCCs in directed graphs. We propose a design methodology that alleviates memory latency and problems with irregular memory access. The design is composed of 16 processing elements dedicated to parallel Breadth-First Search (BFS) and eight processing elements dedicated to finding intersection in parallel. Processing elements are organized to reuse resources and utilize memory bandwidth efficiently. We demonstrate a prototype of our design using the Convey HC-2 system, a commercial high-performance reconfigurable computing coprocessor. Our experimental results show a speedup of as much as 17× for detecting SCCs in large-scale graphs when compared to a conventional sequential software implementation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3