Improving Neural Machine Translation by Transferring Knowledge from Syntactic Constituent Alignment Learning

Author:

Su Chao1ORCID,Huang Heyan1ORCID,Shi Shumin1ORCID,Jian Ping1ORCID

Affiliation:

1. Beijing Institute of Technology, and Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications, Beijing, China

Abstract

Statistical machine translation (SMT) models rely on word-, phrase-, and syntax-level alignments. But neural machine translation (NMT) models rarely explicitly learn the phrase- and syntax-level alignments. In this article, we propose to improve NMT by explicitly learning the bilingual syntactic constituent alignments. Specifically, we first utilize syntactic parsers to induce syntactic structures of sentences, and then we propose two ways to utilize the syntactic constituents in a perceptual (not adversarial) generator-discriminator training framework. One way is to use them to measure the alignment score of sentence-level training examples, and the other is to directly score the alignments of constituent-level examples generated with an algorithm based on word-level alignments from SMT. In our generator-discriminator framework, the discriminator is pre-trained to learn constituent alignments and distinguish the ground-truth translation from the fake ones, while the generative translation model is fine-tuned to receive the alignment knowledge and to generate translations that best approximate the true ones. Experiments and analysis show that the learned constituent alignments can help improve the translation results.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference56 articles.

1. Towards String-To-Tree Neural Machine Translation

2. Syntactically Supervised Transformers for Faster Neural Machine Translation

3. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations (ICLR’15). Retrieved from http://arxiv.org/abs/1409.0473.

4. Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. Ltp: A chinese language technology platform. In Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. Association for Computational Linguistics, 13–16.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reusable Component Retrieval: A Semantic Search Approach for Low Resource Languages;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3