Redundant Memory Array Architecture for Efficient Selective Protection

Author:

Zheng Ruohuang1,Huang Michael C.1

Affiliation:

1. University of Rochester

Abstract

Memory hardware errors may result from transient particle-induced faults as well as device defects due to aging. These errors are an important threat to computer system reliability as VLSI technologies continue to scale. Managing memory hardware errors is a critical component in developing an overall system dependability strategy. Memory error detection and correction are supported in a range of available hardware mechanisms. However, memory protections (particularly the more advanced ones) come at substantial costs in performance and energy usage. Moreover, the protection mechanisms are often a fixed, system-wide choice and can not easily adapt to different protection demand of different applications or memory regions. In this paper, we present a new RAIM (redundant array of independent memory) design that compared to the state-of-the-art implementation can easily provide high protection capability and the ability to selectively protect a subset of the memory. A straightforward implementation of the design can incur a substantial memory traffic overhead. We propose a few practical optimizations to mitigate this overhead. With these optimizations the proposed RAIM design offers significant advantages over existing RAIM design at lower or comparable costs.

Funder

Semiconductor Research Corporation

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. CRONO: A Benchmark Suite for Multithreaded Graph Algorithms Executing on Futuristic Multicores

2. Amazon 2008. Amazon S3 Availability Event. (2008). http://status.aws.amazon.com/s3-20080720.html. Amazon 2008. Amazon S3 Availability Event. (2008). http://status.aws.amazon.com/s3-20080720.html.

3. The PARSEC benchmark suite

4. The gem5 simulator

5. Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3