Generative type-aware mutation for testing SMT solvers

Author:

Park Jiwon1,Winterer Dominik2,Zhang Chengyu3,Su Zhendong2

Affiliation:

1. École Polytechnique, France

2. ETH Zurich, Switzerland

3. East China Normal University, China

Abstract

We propose Generative Type-Aware Mutation, an effective approach for testing SMT solvers. The key idea is to realize generation through the mutation of expressions rooted with parametric operators from the SMT-LIB specification. Generative Type-Aware Mutation is a hybrid of mutation-based and grammar-based fuzzing and features an infinite mutation space—overcoming a major limitation of OpFuzz, the state-of-the-art fuzzer for SMT solvers. We have realized Generative Type-Aware Mutation in a practical SMT solver bug hunting tool, TypeFuzz. During our testing period with TypeFuzz, we reported over 237 bugs in the state-of-the-art SMT solvers Z3 and CVC4. Among these, 189 bugs were confirmed and 176 bugs were fixed. Most notably, we found 18 soundness bugs in CVC4’s default mode alone. Several of them were two years latent (7/18). CVC4 has been proved to be a very stable SMT solver and has resisted several fuzzing campaigns.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzz4All: Universal Fuzzing with Large Language Models;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

2. CaDiCaL 2.0;Lecture Notes in Computer Science;2024

3. Arithmetic Solving in Z3;Lecture Notes in Computer Science;2024

4. SMT Solver Validation Empowered by Large Pre-Trained Language Models;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

5. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models;Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3