Personalized Context-Aware Point of Interest Recommendation

Author:

Aliannejadi Mohammad1ORCID,Crestani Fabio1

Affiliation:

1. Università della Svizzera italiana (USI), Lugano, Switzerland

Abstract

Personalized recommendation of Points of Interest (POIs) plays a key role in satisfying users on Location-Based Social Networks (LBSNs). In this article, we propose a probabilistic model to find the mapping between user-annotated tags and locations’ taste keywords. Furthermore, we introduce a dataset on locations’ contextual appropriateness and demonstrate its usefulness in predicting the contextual relevance of locations. We investigate four approaches to use our proposed mapping for addressing the data sparsity problem: one model to reduce the dimensionality of location taste keywords and three models to predict user tags for a new location. Moreover, we present different scores calculated from multiple LBSNs and show how we incorporate new information from the mapping into a POI recommendation approach. Then, the computed scores are integrated using learning to rank techniques. The experiments on two TREC datasets show the effectiveness of our approach, beating state-of-the-art methods.

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recommender systems applied to the tourism industry: a literature review;Cogent Business & Management;2024-06-25

2. Pseudo Gradient-Adjusted Particle Swarm Optimization for Accurate Adaptive Latent Factor Analysis;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-04

3. Disentangled Graph Social Recommendation;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Personalization of a tourism recommender system based on users similarity and the use of deep belief network;Journal of Geospatial Information Technology;2023-03-01

5. User Cold-Start Recommendation via Inductive Heterogeneous Graph Neural Network;ACM Transactions on Information Systems;2023-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3