Cluster validity methods

Author:

Halkidi Maria1,Batistakis Yannis1,Vazirgiannis Michalis1

Affiliation:

1. Athens University of Economics & Business

Abstract

Clustering is an unsupervised process since there are no predefined classes and no examples that would indicate grouping properties in the data set. The majority of the clustering algorithms behave differently depending on the features of the data set and the initial assumptions for defining groups. Therefore, in most applications the resulting clustering scheme requires some sort of evaluation as regards its validity. Evaluating and assessing the results of a clustering algorithm is the main subject of cluster validity. In this paper we present a review of the clustering validity and methods. More specifically, Part I of the paper discusses the cluster validity approaches based on external and internal criteria.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference12 articles.

1. Validating fuzzy partitions obtained through c-shells clustering

2. Fayyad M. U. Piatesky-Shapiro G. Smuth P. Uthurusamy R.. Advances in Knowledge Discovery and Data Mining. AAAI Press 1996]] Fayyad M. U. Piatesky-Shapiro G. Smuth P. Uthurusamy R.. Advances in Knowledge Discovery and Data Mining. AAAI Press 1996]]

3. Unsupervised optimal fuzzy clustering

Cited by 300 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3