Introducing the Temporal Dimension to Memory Forensics

Author:

Pagani Fabio1ORCID,Fedorov Oleksii2,Balzarotti Davide1

Affiliation:

1. Eurecom, France

2. Igor Sikorsky Kyiv Polytechnic Institute, Ukraine

Abstract

Kickstarted by the Digital Forensic Research Workshop (DFRWS) conference in 2005, modern memory analysis is now one of most active areas of computer forensics and it mostly focuses on techniques to locate key operating system data structures and extract high-level information. These techniques work on the assumption that the information inside a memory dump is consistent and the copy of the physical memory was obtained in an atomic operation. Unfortunately, this is seldom the case in real investigations, where software acquisition tools record information while the rest of the system is running. Thus, since the content of the memory is changing very rapidly, the resulting memory dump may contain inconsistent data. While this problem is known, its consequences are unclear and often overlooked. Unfortunately, errors can be very subtle and can affect the results of an analysis in ways that are difficult to detect. In this article, we argue that memory forensics should also consider the time in which each piece of data was acquired. This new temporal dimension provides a preliminary way to assess the reliability of a given result and opens the door to new research directions that can minimize the effect of the acquisition time or detect inconsistencies. To support our hypothesis, we conducted several experiments to show that inconsistencies are very frequent and can negatively impact an analysis. We then discuss modifications we made to popular memory forensic tools to make the temporal dimension explicit during the analysis and to minimize its effect by resorting to a locality-based acquisition.

Funder

H2020 European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Reliability During Physical Memory Forensics: Strategies and Practices;SN Computer Science;2024-01-12

2. An Experimental Assessment of Inconsistencies in Memory Forensics;ACM Transactions on Privacy and Security;2023-12-12

3. The Future of Cyber-Crimes and Cyber War in the Metaverse;Advances in Digital Crime, Forensics, and Cyber Terrorism;2023-11-27

4. Spoofed Email Based Cyberattack Detection Using Machine Learning;Journal of Computer Information Systems;2023-10-20

5. Investigating the Impact on Data Recovery in Computer Forensics;2023 IEEE International Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs);2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3