Physics-directed Data Augmentation for Deep Model Transfer to Specific Sensor

Author:

Luo Wenjie1ORCID,Yan Zhenyu2ORCID,Song Qun1ORCID,Tan Rui1ORCID

Affiliation:

1. Nanyang Technological University, Singapore

2. The Chinese University of Hong Kong, Hong Kong

Abstract

Runtime domain shifts from the training phase caused by sensor characteristic variation incur performance drops of the deep learning-based sensing systems. To address this problem, existing transfer learning techniques require substantial target-domain data and incur high post-deployment overhead. Differently, we propose to exploit the first principle governing the domain shift to reduce the demand for target-domain data. Specifically, our proposed approach called PhyAug uses the first principle fitted with few labeled or unlabeled data pairs collected by the source sensor and the target sensor to transform the existing source-domain training data into the augmented target-domain data for calibrating the deep neural networks. In two audio sensing case studies of keyword spotting and automatic speech recognition, PhyAug recovers the recognition accuracy losses due to microphones’ characteristic variations by 37% to 72% with 5-second unlabeled data collected from the target microphones. In a case study of acoustics-based room recognition, PhyAug recovers the recognition accuracy loss caused by smartphone microphone variation by 33% to 80%. In the last case study of fisheye image recognition, PhyAug reduces the image recognition error due to the camera-induced distortions by 72%.

Funder

Singapore Government through the Industry Alignment Fund - Industry Collaboration Projects Grant

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3