Intuitionistic Linear Temporal Logics

Author:

Balbiani Philippe1,Boudou Joseph1,Diéguez Martín2,Fernández-Duque David3ORCID

Affiliation:

1. IRIT, Toulouse University, France

2. LAB-STICC, ENIB, France

3. Department of Mathematics, Ghent University, Belgium

Abstract

We consider intuitionistic variants of linear temporal logic with “next,” “until,” and “release” based on expanding posets : partial orders equipped with an order-preserving transition function. This class of structures gives rise to a logic that we denote ITL e , and by imposing additional constraints, we obtain the logics ITL p of persistent posets and ITL ht of here-and-there temporal logic, both of which have been considered in the literature. We prove that ITL e has the effective finite model property and hence is decidable, while ITL p does not have the finite model property. We also introduce notions of bounded bisimulations for these logics and use them to show that the “until” and “release” operators are not definable in terms of each other, even over the class of persistent posets.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference43 articles.

1. A denotational semantics for equilibrium logic;Aguado F.;Theory Pract. Logic Program.,2015

2. A general method for proving decidability of intuitionistic modal logics

3. P. Blackburn M. de Rijke and Y. Venema. 2001. Modal Logic. Cambridge University Press Cambridge UK. P. Blackburn M. de Rijke and Y. Venema. 2001. Modal Logic. Cambridge University Press Cambridge UK.

4. A decidable intuitionistic temporal logic. In Proceedings of the 26th EACSL Annual Conference on Computer Science Logic (CSL’17). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Stockholm;Boudou J.;Sweden,2017

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intuitionistic Metric Temporal Logic;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

2. Reasoning about Intuitionistic Computation Tree Logic;Electronic Proceedings in Theoretical Computer Science;2023-09-30

3. Ill-Founded Proof Systems for Intuitionistic Linear-Time Temporal Logic;Lecture Notes in Computer Science;2023

4. Design and Implementation of Information-Analytical and Industrial and Technological Processes in Production Based on Neuro-Fuzzy Petri Nets;2022 VI International Conference on Information Technologies in Engineering Education (Inforino);2022-04-12

5. COMPLETE INTUITIONISTIC TEMPORAL LOGICS FOR TOPOLOGICAL DYNAMICS;The Journal of Symbolic Logic;2022-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3