Asymmetrical Attention Networks Fused Autoencoder for Debiased Recommendation

Author:

Zhang Yihao1ORCID,Zhao Chu1ORCID,Liao Weiwen1ORCID,Zhou Wei2ORCID,Yuan Meng3ORCID

Affiliation:

1. Chongqing University of Technology, China

2. Chongqing University, China

3. Beihang University, China

Abstract

Popularity bias is a massive challenge for autoencoder-based models, which decreases the level of personalization and hurts the fairness of recommendations. User reviews reflect their preferences and help mitigate bias or unfairness in the recommendation. However, most existing works typically incorporate user (item) reviews into a long document and then use the same module to process the document in parallel. Actually, the set of user reviews is completely different from the set of item reviews. User reviews are heterogeneous in that they reflect a variety of items purchased by users, while item reviews are only related to the item itself and are thus typically homogeneous. In this article, a novel asymmetric attention network fused with autoencoders is proposed, which jointly learns representations from the user and item reviews and implicit feedback to perform recommendations. Specifically, we design an asymmetric attentive module to capture rich representations from user and item reviews, respectively, which solves data sparsity and explainable problems. Furthermore, to further address popularity bias, we apply a noise-contrastive estimation objective to learn high-quality “de-popularity” embedding via the decoder structure. A series of extensive experiments are conducted on four benchmark datasets to show that leveraging user review information can eliminate popularity bias and improve performance compared to various state-of-the-art recommendation techniques.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Humanities and Social Sciences Research Program of Chongqing Municipal Education Commission

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deconfounded Cross-modal Matching for Content-based Micro-video Background Music Recommendation;ACM Transactions on Intelligent Systems and Technology;2024-04-15

2. Fairness in Recommendation: Foundations, Methods, and Applications;ACM Transactions on Intelligent Systems and Technology;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3