Recovering from distributable thread failures in distributed real-time Java

Author:

Curley Edward1,Ravindran Binoy1,Anderson Jonathan1,Jensen E. Douglas2

Affiliation:

1. Virginia Tech, Blacksburg, Blacksburg, VA

2. The MITRE Corporation, Bedford, MA

Abstract

We consider the problem of recovering from the failures of distributable threads (“threads”) in distributed real-time systems that operate under runtime uncertainties including those on thread execution times, thread arrivals, and node failure occurrences. When a thread experiences a node failure, the result is a broken thread having an orphan. Under a termination model, the orphans must be detected and aborted, and exceptions must be delivered to the farthest, contiguous surviving thread segment for resuming thread execution. Our application/scheduling model includes the proposed distributable thread programming model for the emerging Distributed Real-Time Specification for Java (DRTSJ), together with an exception-handler model. Threads are subject to time/utility function (TUF) time constraints and an utility accrual (UA) optimality criterion. A key underpinning of the TUF/UA scheduling paradigm is the notion of “best-effort” where higher importance threads are always favored over lower importance ones, irrespective of thread urgency as specified by their time constraints. We present a thread scheduling algorithm called HUA and a thread integrity protocol called TPR. We show that HUA and TPR bound the orphan cleanup and recovery time with bounded loss of the best-effort property. Our implementation experience for HUA/TPR in the Reference Implementation of the proposed programming model for the DRTSJ demonstrates the algorithm/protocol's effectiveness.

Funder

Bundesministerium für Verkehr, Innovation und Technologie

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3