Knowledge discovery from 3D human motion streams through semantic dimensional reduction

Author:

Jin Yohan1,Prabhakaran Balakrishnan2

Affiliation:

1. MySpace Inc.

2. University of Texas, Dallas, TX

Abstract

3D human motion capture is a form of multimedia data that is widely used in entertainment as well as medical fields (such as orthopedics, physical medicine, and rehabilitation where gait analysis is needed). These applications typically create large repositories of motion capture data and need efficient and accurate content-based retrieval techniques. 3D motion capture data is in the form of multidimensional time-series data. To reduce the dimensions of human motion data while maintaining semantically important features, we quantize human motion data by extracting spatio-temporal features through SVD and translate them onto a symbolic sequential representation through our proposed sGMMEM (semantic Gaussian Mixture Modeling with EM). In order to handle variations in motion capture data due to human body characteristics and speed of motion, we transform the semantically quantized values into a histogram representation. This representation is used as a signature for classification and similarity-based retrieval. We achieved good classification accuracies for “coarse” human motion categories (such as walking 92.85%, run 91.42%, and jump 94.11%) and even for subtle categories (such as dance 89.47%, laugh 83.33%, basketball signal 85.71%, golf putting 80.00%). Experiments also demonstrated that the proposed approach outperforms earlier techniques such as the wMSV (weighted Motion Singular Vector) approach and LB_Keogh method.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PESTA: An Elastic Motion Capture Data Retrieval Method;Journal of Computer Science and Technology;2023-07

2. Deep Hashing for Motion Capture Data Retrieval;ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2021-06-06

3. Generic Content-Based Retrieval of Marker-Based Motion Capture Data;IEEE Transactions on Visualization and Computer Graphics;2018-06-01

4. Robust Multi-Variate Temporal Features of Multi-Variate Time Series;ACM Transactions on Multimedia Computing, Communications, and Applications;2018-01-16

5. Spatial temporal pyramid matching using temporal sparse representation for human motion retrieval;The Visual Computer;2014-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3