Information preserving XML schema embedding

Author:

Fan Wenfei1,Bohannon Philip2

Affiliation:

1. University of Edinburgh and Lucent Technologies

2. Yahoo! Research

Abstract

A fundamental concern of data integration in an XML context is the ability to embed one or more source documents in a target document so that (a) the target document conforms to a target schema and (b) the information in the source documents is preserved . In this paper, information preservation for XML is formally studied, and the results of this study guide the definition of a novel notion of schema embedding between two XML DTD schemas represented as graphs. Schema embedding generalizes the conventional notion of graph similarity by allowing an edge in a source DTD schema to be mapped to a path in the target DTD. Instance-level embeddings can be derived from the schema embedding in a straightforward manner, such that conformance to a target schema and information preservation are guaranteed. We show that it is NP-complete to find an embedding between two DTD schemas. We also outline efficient heuristic algorithms to find candidate embeddings, which have proved effective by our experimental study. These yield the first systematic and effective approach to finding information preserving XML mappings.

Funder

Biotechnology and Biological Sciences Research Council

National Natural Science Foundation of China

ERSRC

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference50 articles.

1. Complexity of answering queries using materialized views

2. Restructuring hierarchical database objects

3. Abiteboul S. Hull R. and Vianu V. 1995. Foundations of Databases. Addison-Wesley. Abiteboul S. Hull R. and Vianu V. 1995. Foundations of Databases. Addison-Wesley.

4. XML with data values: typechecking revisited

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3