Executing Microservice Applications on Serverless, Correctly

Author:

Kallas Konstantinos1ORCID,Zhang Haoran1ORCID,Alur Rajeev1ORCID,Angel Sebastian2ORCID,Liu Vincent1ORCID

Affiliation:

1. University of Pennsylvania, USA

2. University of Pennsylvania, USA / Microsoft Research, USA

Abstract

While serverless platforms substantially simplify the provisioning, configuration, and management of cloud applications, implementing correct services on top of these platforms can present significant challenges to programmers. For example, serverless infrastructures introduce a host of failure modes that are not present in traditional deployments. Individual serverless instances can fail while others continue to make progress, correct but slow instances can be killed by the cloud provider as part of resource management, and providers will often respond to such failures by re-executing requests. For functions with side-effects, these scenarios can create behaviors that are not observable in serverful deployments. In this paper, we propose mu2sls, a framework for implementing microservice applications on serverless using standard Python code with two extra primitives: transactions and asynchronous calls. Our framework orchestrates user-written services to address several challenges, such as failures and re-executions, and provides formal guarantees that the generated serverless implementations are correct. To that end, we present a novel service specification abstraction and formalization of serverless implementations that facilitate reasoning about the correctness of a given application’s serverless implementation. This formalization forms the basis of the mu2sls prototype, which we then use to develop a few real-world microservice applications and show that the performance of the generated serverless implementations achieves significant scalability (3-5× the throughput of a sequential implementation) while providing correctness guarantees in the context of faults, re-execution, and concurrency.

Funder

NSF Award CCF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference48 articles.

1. Semantics of transactional memory and automatic mutual exclusion

2. Cloud-Scale Runtime Verification of Serverless Applications

3. 2020. AWS Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html 2020. AWS Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

4. 2022. FoundationDB. https://www.foundationdb.org/ 2022. FoundationDB. https://www.foundationdb.org/

5. The development of Erlang;Armstrong Joe;ICFP.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3