Symbolic Trajectories

Author:

Güting Ralf Hartmut1,Valdés Fabio1,Damiani Maria Luisa2

Affiliation:

1. FernUniversität Hagen, Hagen, Germany

2. University of Milan, Milan, Italy

Abstract

Due to the proliferation of GPS-enabled devices in vehicles or with people, large amounts of position data are recorded every day and the management of such mobility data, also called trajectories, is a very active research field. A lot of effort has gone into discovering “semantics” from the raw geometric trajectories by relating them to the spatial environment or finding patterns, for example, by data mining techniques. A question is how the resulting “meaningful” trajectories can be represented or further queried. In this article, we propose a systematic study of annotated trajectory databases . We define a very simple generic model called symbolic trajectory to capture a wide range of meanings derived from a geometric trajectory. Essentially, a symbolic trajectory is just a time-dependent label; variants have sets of labels, places, or sets of places. They are modeled as abstract data types and integrated into a well-established framework of data types and operations for moving objects. Symbolic trajectories can represent, for example, the names of roads traversed obtained by map matching, transportation modes, speed profile, cells of a cellular network, behaviors of animals, cinemas within 2km distance, and so forth. Symbolic trajectories can be combined with geometric trajectories to obtain annotated trajectories. Besides the model, the main technical contribution of the article is a language for pattern matching and rewriting of symbolic trajectories. A symbolic trajectory can be represented as a sequence of pairs (called units) consisting of a time interval and a label. A pattern consists of unit patterns (specifications for time interval and/or label) and wildcards, matching units and sequences of units, respectively, and regular expressions over such elements. It may further contain variables that can be used in conditions and in rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in the host DBMS environment, which makes the language extensible and quite powerful. We formally define the data model and syntax and semantics of the pattern language. Query operations are offered to integrate pattern matching, rewriting, and classification of symbolic trajectories into a DBMS querying environment. Implementation of the model using finite state machines is described in detail. An experimental evaluation demonstrates the efficiency of the implementation. In particular, it shows dramatic improvements in storage space and response time in a comparison of symbolic and geometric trajectories for some simple queries that can be executed on both symbolic and raw trajectories.

Funder

EU COST Action IC0903 “Knowledge Discovery from Moving Objects.”

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modelling and Simulation,Information Systems,Signal Processing

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Query Optimizer for Range Queries over Multi-Attribute Trajectories;ACM Transactions on Intelligent Systems and Technology;2023-01-27

2. Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories Databases;34th International Conference on Scientific and Statistical Database Management;2022-07-06

3. A topological model of trajectories with road network space;Transactions in GIS;2022-04-22

4. MFPMiner: Mining Meaningful Frequent Patterns from Spatio-textual Trajectories;ACM Transactions on Spatial Algorithms and Systems;2022-03-09

5. K-means for semantically enriched trajectories;Proceedings of the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility;2021-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3