Silence

Author:

Goren Guy1,Moses Yoram1

Affiliation:

1. The Viterbi Faculty of Electrical Engineering, Technion, Haifa, Israel

Abstract

The cost of communication is a substantial factor affecting the scalability of many distributed applications. Every message sent can incur a cost in storage, computation, energy, and bandwidth. Consequently, reducing the communication costs of distributed applications is highly desirable. The best way to reduce message costs is by communicating without sending any messages whatsoever. This article initiates a rigorous investigation into the use of silence in synchronous settings, in which processes can fail. We formalize sufficient conditions for information transfer using silence, as well as necessary conditions for particular cases of interest. This allows us to identify message patterns that enable communication through silence. In particular, a pattern called a silent choir is identified, and shown to be central to information transfer via silence in failure-prone systems. The power of the new framework is demonstrated on the atomic commitment problem (AC). A complete characterization of the tradeoff between message complexity and round complexity in the synchronous model with crash failures is provided, in terms of lower bounds and matching protocols. In particular, a new message-optimal AC protocol is designed using silence, in which processes decide in three rounds in the common case. This significantly improves on the best previously known message-optimal AC protocol, in which decisions were performed in Θ( n ) rounds. And in the naked light I saw Ten thousand people, maybe more People talking without speaking People writing songs that voices never share And no one dared Disturb the sound of silence Paul Simon, 1964

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference32 articles.

1. Consensus algorithms with one-bit messages

2. Beyond Lamport's Happened-before

3. A Loosely Coupled Distributed System for Reliably Storing Data

4. Philip A. Bernstein Vassos Hadzilacos and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems. Vol. 370. Addison-Wesley New York. Philip A. Bernstein Vassos Hadzilacos and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems. Vol. 370. Addison-Wesley New York.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3