A cosimulation methodology for HW/SW validation and performance estimation

Author:

Fummi Franco1,Loghi Mirko2,Poncino Massimo2,Pravadelli Graziano1

Affiliation:

1. University of Verona, Verona, Italy

2. Turin Polytechnic, Torino, Italy

Abstract

Cosimulation strategies allow us to simulate and verify HW/SW embedded systems before the real platform is available. In this field, there is a large variety of approaches that rely on different communication mechanisms to implement an efficient interface between the SW and the HW simulators. However, the literature lacks a comprehensive methodology which addresses the need for integrating and synchronizing heterogeneous simulators, like, for example, the SystemC simulation kernel for HW modules and an instruction set simulator for SW applications, without being intrusive for the HW and SW descriptions involved in the simulation. In this context, this article presents, compares, and integrates in a system-level framework two different co-simulation strategies for modeling, analyzing, and validating the performance of a HW/SW embedded system. Moreover, for both of them, a mechanism is proposed to provide an accurate time synchronization of the HW/SW communication. The first strategy is intended to provide an early cosimulation environment where HW/SW interaction can be validated without involving the operating system. The communication is implemented between a single SW task and a SystemC description of an HW module by exploiting the features of the remote debugging interface of a debugger (the GNU GDB), and by modifying the SystemC simulation kernel. On the other hand, the second strategy is intended to be used in further development steps, when the operating system is introduced to validate the cosimulation between HW modules and multitasking SW applications. In this approach, the communication is implemented via interrupts by using the features offered by the operating system.Experimental results are reported on two different case studies to analyze and compare the effectiveness of both the approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous co-simulation for embedded and cyber-physical systems design;SIMULATION;2020-06-01

2. System-level co-simulation for embedded systems;AIP Advances;2020-03-01

3. Design Domains and Abstraction Levels for Effective Smart System Simulation;Smart Systems Integration and Simulation;2016

4. A Parallelizing Matlab Compiler Framework and Run Time for Heterogeneous Systems;2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems;2015-08

5. Buffer Controller-Based Multiple Processing Element Utilization for Dataflow Synthesis;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2011-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3