Earning and Utility Limits in Fisher Markets

Author:

Bei Xiaohui1,Garg Jugal2,Hoefer Martin3,Mehlhorn Kurt4

Affiliation:

1. Nanyang Technological University, Singapore

2. University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Goethe University Frankfurt, Germany

4. Max-Planck-Institut für Informatik, Saarbruecken, Germany

Abstract

Earning limits and utility limits are novel aspects in the classic Fisher market model. Sellers with earning limits have bounds on their income and lower the supply they bring to the market if income exceeds the limit. Buyers with utility limits have an upper bound on the amount of utility that they want to derive and lower the budget they bring to the market if utility exceeds the limit. Markets with these properties can have multiple equilibria with different characteristics. We analyze earning limits and utility limits in markets with linear and spending-constraint utilities. For markets with earning limits and spending-constraint utilities, we show that equilibrium price vectors form a lattice and the spending of buyers is unique in non-degenerate markets. We provide a scaling-based algorithm to compute an equilibrium in time O ( n 3 ℓ log (ℓ + nU )), where n is the number of agents, ℓ ≥ n a bound on the segments in the utility functions, and U the largest integer in the market representation. We show how to refine any equilibrium in polynomial time to one with minimal prices or one with maximal prices (if it exists). Moreover, our algorithm can be used to obtain in polynomial time a 2-approximation for maximizing Nash social welfare in multi-unit markets with indivisible items that come in multiple copies. For markets with utility limits and linear utilities, we show similar results—lattice structure of price vectors, uniqueness of allocation in non-degenerate markets, and polynomial-time refinement procedures to obtain equilibria with minimal and maximal prices. We complement these positive results with hardness results for related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation points for each buyer and each good.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Marketing,Economics and Econometrics,Statistics and Probability,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3