Scene Grammars, Factor Graphs, and Belief Propagation

Author:

Chua Jeroen1,Felzenszwalb Pedro F.1

Affiliation:

1. Brown University, USA

Abstract

We describe a general framework for probabilistic modeling of complex scenes and for inference from ambiguous observations. The approach is motivated by applications in image analysis and is based on the use of priors defined by stochastic grammars. We define a class of grammars that capture relationships between the objects in a scene and provide important contextual cues for statistical inference. The distribution over scenes defined by a probabilistic scene grammar can be represented by a graphical model, and this construction can be used for efficient inference with loopy belief propagation. We show experimental results with two applications. One application involves the reconstruction of binary contour maps. Another application involves detecting and localizing faces in images. In both applications, the same framework leads to robust inference algorithms that can effectively combine local information to reason about a scene.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference52 articles.

1. Alfred V. Aho Ravi Sethi and Jeffrey D. Ullman. 1986. Compilers: Principles Tools and Techniques. Addison-Wesley. Alfred V. Aho Ravi Sethi and Jeffrey D. Ullman. 1986. Compilers: Principles Tools and Techniques. Addison-Wesley.

2. Yali Amit. 2002. 2D Object Detection and Recognition. MIT Press. Yali Amit. 2002. 2D Object Detection and Recognition. MIT Press.

3. Contour Detection and Hierarchical Image Segmentation

4. On the Statistical Analysis of Dirty Pictures

5. Elie Bienenstock Stuart Geman and Daniel Potter. 1997. Compositionality MDL priors and object recognition. In Advances in Neural Information Processing Systems. 838--844. Elie Bienenstock Stuart Geman and Daniel Potter. 1997. Compositionality MDL priors and object recognition. In Advances in Neural Information Processing Systems. 838--844.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3