The One-Way Communication Complexity of Submodular Maximization with Applications to Streaming and Robustness

Author:

Feldman Moran1ORCID,Norouzi-Fard Ashkan2ORCID,Svensson Ola3ORCID,Zenklusen Rico4ORCID

Affiliation:

1. University of Haifa

2. Google Research

3. EPFL

4. ETH Zurich

Abstract

We consider the classical problem of maximizing a monotone submodular function subject to a cardinality constraint, which, due to its numerous applications, has recently been studied in various computational models. We consider a clean multiplayer model that lies between the offline and streaming model, and study it under the aspect of one-way communication complexity. Our model captures the streaming setting (by considering a large number of players), and, in addition, two-player approximation results for it translate into the robust setting. We present tight one-way communication complexity results for our model, which, due to the connections mentioned previously, have multiple implications in the data stream and robust setting. Even for just two players, a prior information-theoretic hardness result implies that no approximation factor above 1/2 can be achieved in our model, if only queries to feasible sets (i.e., sets respecting the cardinality constraint) are allowed. We show that the possibility of querying infeasible sets can actually be exploited to beat this bound, by presenting a tight 2/3-approximation taking exponential time, and an efficient 0.514-approximation. To the best of our knowledge, this is the first example where querying a submodular function on infeasible sets leads to provably better results. Through the link to the (non-streaming) robust setting mentioned previously, both of these algorithms improve on the current state of the art for robust submodular maximization, showing that approximation factors beyond 1/2 are possible. Moreover, exploiting the link of our model to streaming, we settle the approximability for streaming algorithms by presenting a tight 1/2+ɛ hardness result, based on the construction of a new family of coverage functions. This improves on a prior 0.586 hardness and matches, up to an arbitrarily small margin, the best-known approximation algorithm.

Funder

Israel Science Foundation

Swiss National Science Foundation

European Union’s Horizon 2020 research and innovation programme

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference46 articles.

1. Submodular secretary problem with shortlists;Agrawal Shipra;CoRR,2018

2. Optimal streaming algorithms for submodular maximization with cardinality constraints;Alaluf Naor;CoRR,2020

3. Francis R. Bach. 2010. Structured sparsity-inducing norms through submodular functions. In Proceedings of Advances in Neural Information Processing Systems (NIPS’10), Vol. 23. 118–126.

4. Streaming submodular maximization

5. Summarization of Multi-Document Topic Hierarchies using Submodular Mixtures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3