Multiparty GV: functional multiparty session types with certified deadlock freedom

Author:

Jacobs Jules1ORCID,Balzer Stephanie2ORCID,Krebbers Robbert1ORCID

Affiliation:

1. Radboud University Nijmegen, Netherlands

2. Carnegie Mellon University, USA

Abstract

Session types have recently been integrated with functional languages, bringing message-passing concurrency to functional programming. Channel endpoints then become first-class and can be stored in data structures, captured in closures, and sent along channels. Representatives of the GV (Wadler's "Good Variation") session type family are of particular appeal because they not only assert session fidelity but also deadlock freedom, inspired by a Curry-Howard correspondence to linear logic. A restriction of current versions of GV, however, is the focus on binary sessions, limiting concurrent interactions within a session to two participants. This paper introduces Multiparty GV (MPGV), a functional language with multiparty session types, allowing concurrent interactions among several participants. MPGV upholds the strong guarantees of its ancestor GV, including deadlock freedom, despite session interleaving and delegation. MPGV has a novel redirecting construct for modular programming with first-class endpoints, thanks to which we give a type-preserving translation from binary session types to MPGV to show that MPGV is strictly more general than binary GV. All results in this paper have been mechanized using the Coq proof assistant.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing;Proceedings of the ACM on Programming Languages;2024-01-05

2. Alice or Bob?: Process polymorphism in choreographies;Journal of Functional Programming;2024

3. Programming Language Implementations with Multiparty Session Types;Lecture Notes in Computer Science;2024

4. Prioritise the Best Variation;Logical Methods in Computer Science;2023-12-18

5. Separating Sessions Smoothly;Logical Methods in Computer Science;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3