Symbolic Loop Compilation for Tightly Coupled Processor Arrays

Author:

Witterauf Michael1,Walter Dominik1,Hannig Frank1,Teich Jürgen1ORCID

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

Tightly Coupled Processor Arrays (TCPAs), a class of massively parallel loop accelerators, allow applications to offload computationally expensive loops for improved performance and energy efficiency. To achieve these two goals, executing a loop on a TCPA requires an efficient generation of specific programs as well as other configuration data for each distinct combination of loop bounds and number of available processing elements (PEs). Since both these parameters are generally unknown at compile time—the number of available PEs due to dynamic resource management, and the loop bounds, because they depend on the problem size—both the programs and configuration data must be generated at runtime. However, pure just-in-time compilation is impractical, because mapping a loop program onto a TCPA entails solving multiple NP-complete problems. As a solution, this article proposes a unique mixed static/dynamic approach called symbolic loop compilation. It is shown that at compile time, the NP-complete problems (modulo scheduling, register allocation, and routing) can still be solved to optimality in a symbolic way resulting in a so-called symbolic configuration , a space-efficient intermediate representation parameterized in the loop bounds and number of PEs. This phase is called symbolic mapping . At runtime, for each requested accelerated execution of a loop program with given loop bounds and known number of available PEs, a concrete configuration , including PE programs and configuration data for all other components, is generated from the symbolic configuration according to these parameter values. This phase is called instantiation . We describe both phases in detail and show that instantiation runs in polynomial time with its most complex step, program instantiation, not directly depending on the number of PEs and thus scaling to arbitrary sizes of TCPAs. To validate the efficiency of this mixed static/dynamic compilation approach, we apply symbolic loop compilation to a set of real-world loop programs from several domains, measuring both compilation time and space requirements. Our experiments confirm that a symbolic configuration is a space-efficient representation suited for systems with little memory—in many cases, a symbolic configuration is smaller than even a single concrete configuration instantiated from it—and that the times for the runtime phase of program instantiation and configuration loading are negligible and moreover independent of the size of the available processor array. To give an example, instantiating a configuration for a matrix-matrix multiplication benchmark takes equally long for 4× 4 and 32× 32 PEs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Optimization of Block LU Decomposition for Execution on Tightly Coupled Processor Arrays;2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2024-07-24

2. ALPACA: An Accelerator Chip for Nested Loop Programs;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

3. LION;Proceedings of the 19th ACM-IEEE International Conference on Formal Methods and Models for System Design;2021-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3