IP Geolocation through Geographic Clicks

Author:

Dan Ovidiu1,Parikh Vaibhav2,Davison Brian D.3

Affiliation:

1. Lehigh University, Redmond, WA, USA

2. Microsoft Bing, Bothell, WA, USA

3. Lehigh University, Bethlehem, PA, USA

Abstract

IP geolocation databases map IP addresses to their physical locations. They are used to determine the location of online users when their precise location is unavailable. These databases are vital for a number of online services, including search engine personalization, content delivery, local ads, and fraud detection. However, IP geolocation databases are often inaccurate. In this work we present two novel approaches to improving IP geolocation by mining search engine click logs. First, we show that we can derive which URLs have local affinity by clustering clicks from IPs with known locations. We demonstrate that we can further propagate these URL locations to IP addresses with unknown locations. Our approach significantly outperforms two state-of-the-art commercial IP geolocation databases by 25 and 36 percentage points at a distance error of 10 kilometers, respectively. Second, we present an alternative method of assigning locations to URLs when IP location training data is not available, by instead extracting locations from the body of web documents. This second approach also outperforms the baselines by 7 and 17 percentage points, respectively, and has higher coverage than the first method. Finally, we also demonstrate that our two approaches outperform the academic state of the art based on mining query logs.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Reference59 articles.

1. Web-a-where

2. Leonardo Andrade and Mário J. Silva. 2006. Relevance ranking for geographic IR. In Workshop on Geographic Information Retrieval (GIR’06), colocated with SIGIR.

3. Find me if you can

4. Inferring and using location metadata to personalize web search

5. City Size Distributions and Economic Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3