Knowledge-Defined Networking

Author:

Mestres Albert1,Rodriguez-Natal Alberto1,Carner Josep1,Barlet-Ros Pere1,Alarcón Eduard1,Solé Marc2,Muntés-Mulero Victor3,Meyer David4,Barkai Sharon5,Hibbett Mike J.6,Estrada Giovani6,Ma'ruf Khaldun7,Coras Florin8,Ermagan Vina8,Latapie Hugo8,Cassar Chris8,Evans John8,Maino Fabio8,Walrand Jean9,Cabellos Albert1

Affiliation:

1. Universitat Politècnica de Catalunya

2. CA Technologies

3. Ca TechTechnologies

4. Brocade Communication

5. Hewlett Packard Enterprise

6. Intel R&D

7. NTT Communications

8. Cisco Systems

9. University of California, Berkeley

Abstract

The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Impact of Network Topology on Distributed Online Kernel Learning;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

2. Deep Deterministic Policy Gradient-Based Load Balancing Method in SDN Environments;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

3. Reinforcement learning-based autonomous attacker to uncover computer network vulnerabilities;Neural Computing and Applications;2024-05-07

4. INT-Label: Lightweight In-Band Network-Wide Telemetry via Distributed Labeling;IEEE Transactions on Parallel and Distributed Systems;2024-05

5. An Adaptive State Consistency Architecture for Distributed Software-Defined Network Controllers: An Evaluation and Design Consideration;Applied Sciences;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3