Constructing and sampling graphs with a prescribed joint degree distribution

Author:

Stanton Isabelle1,Pinar Ali2

Affiliation:

1. University of California, Berkeley

2. Sandia National Laboratories

Abstract

One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real-life networks due to their differences on other important metrics like conductance. We believe this is, in part, because many of these real-world networks have very different joint degree distributions , that is, the probability that a randomly selected edge will be between nodes of degree k and l . Assortativity is a sufficient statistic of the joint degree distribution, and it has been previously noted that social networks tend to be assortative, while biological and technological networks tend to be disassortative. We suggest understanding the relationship between network structure and the joint degree distribution of graphs is an interesting avenue of further research. An important tool for such studies are algorithms that can generate random instances of graphs with the same joint degree distribution. This is the main topic of this article, and we study the problem from both a theoretical and practical perspective. We provide an algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov chain method for sampling them. We also show that the state space of simple graphs with a fixed degree distribution is connected via endpoint switches . We empirically evaluate the mixing time of this Markov chain by using experiments based on the autocorrelation of each edge. These experiments show that our Markov chain mixes quickly on these real graphs, allowing for utilization of our techniques in practice.

Funder

Division of Computing and Communication Foundations

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference61 articles.

1. A random graph model for massive graphs

2. A Random Graph Model for Power Law Graphs

3. Amanatidis Y. Green B. and Mihail M. 2008. Flexible models for complex networks. Poster at Center for Algorithms Randomness and Computation. Amanatidis Y. Green B. and Mihail M. 2008. Flexible models for complex networks. Poster at Center for Algorithms Randomness and Computation.

4. Classes of small-world networks

5. Barabasi A.-L. and Albert R. 1999. Emergence of scaling in random networks. Science 286 5439 509--512. Barabasi A.-L. and Albert R. 1999. Emergence of scaling in random networks. Science 286 5439 509--512.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3