TRIPDECODER: Study Travel Time Attributes and Route Preferences of Metro Systems from Smart Card Data

Author:

Tian Xiancai1ORCID,Zheng Baihua1,Wang Yazhe1,Huang Hsiao-Ting2,Hung Chih-Chieh3

Affiliation:

1. Living Analytics Research Centre, Singapore Management University, Singapore

2. Department of Electrical Engineering, National Cheng Kung University, Taiwan

3. Department of Management Information System, National Chung Hsing University, Taiwan

Abstract

In this article, we target at recovering the exact routes taken by commuters inside a metro system that are not captured by an Automated Fare Collection (AFC) system and hence remain unknown. We strategically propose two inference tasks to handle the recovering, one to infer the travel time of each travel link that contributes to the total duration of any trip inside a metro network and the other to infer the route preferences based on historical trip records and the travel time of each travel link inferred in the previous inference task. As these two inference tasks have interrelationship, most of existing works perform these two tasks simultaneously. However, our solution TripDecoder adopts a totally different approach. TripDecoder fully utilizes the fact that there are some trips inside a metro system with only one practical route available. It strategically decouples these two inference tasks by only taking those trip records with only one practical route as the input for the first inference task of travel time and feeding the inferred travel time to the second inference task as an additional input, which not only improves the accuracy but also effectively reduces the complexity of both inference tasks. Two case studies have been performed based on the city-scale real trip records captured by the AFC systems in Singapore and Taipei to compare the accuracy and efficiency of TripDecoder and its competitors. As expected, TripDecoder has achieved the best accuracy in both datasets, and it also demonstrates its superior efficiency and scalability.

Funder

National Research Foundation, Singapore under its International Research Centres in Singapore Funding Initiative

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3