Generative AI for Self-Adaptive Systems: State of the Art and Research Roadmap

Author:

Li Jialong1ORCID,Zhang Mingyue2ORCID,Li Nianyu3ORCID,Weyns Danny4ORCID,Jin Zhi5ORCID,Tei Kenji6ORCID

Affiliation:

1. Waseda University, Japan

2. Southwest University, China

3. Zhongguancun Laboratory, China

4. KU Leuven, Belgium

5. Peking University, China

6. Tokyo Institute of Technology, Japan

Abstract

Self-adaptive systems (SASs) are designed to handle changes and uncertainties through a feedback loop with four core functionalities: monitoring, analyzing, planning, and execution. Recently, generative artificial intelligence (GenAI), especially the area of large language models, has shown impressive performance in data comprehension and logical reasoning. These capabilities are highly aligned with the functionalities required in SASs, suggesting a strong potential to employ GenAI to enhance SASs. However, the specific benefits and challenges of employing GenAI in SASs remain unclear. Yet, providing a comprehensive understanding of these benefits and challenges is complex due to several reasons: limited publications in the SAS field, the technological and application diversity within SASs, and the rapid evolution of GenAI technologies. To that end, this paper aims to provide researchers and practitioners a comprehensive snapshot that outlines the potential benefits and challenges of employing GenAI’s within SAS. Specifically, we gather, filter, and analyze literature from four distinct research fields and organize them into two main categories to potential benefits: (i) enhancements to the autonomy of SASs centered around the specific functions of the MAPE-K feedback loop, and (ii) improvements in the interaction between humans and SASs within human-on-the-loop settings. From our study, we outline a research roadmap that highlights the challenges of integrating GenAI into SASs. The roadmap starts with outlining key research challenges that need to be tackled to exploit the potential for applying GenAI in the field of SAS. The roadmap concludes with a practical reflection, elaborating on current shortcomings of GenAI and proposing possible mitigation strategies. 1

Publisher

Association for Computing Machinery (ACM)

Reference442 articles.

1. Few-shot training LLMs for project-specific code-summarization

2. Automatic Semantic Augmentation of Language Model Prompts (for Code Summarization)

3. Human Compatible AI. 2023. overcooked_ai: A cooperative multi-agent environment based on the Overcooked game. https://github.com/HumanCompatibleAI/overcooked_ai. Accessed: 2024-05-12.

4. Retraining a BERT Model for Transfer Learning in Requirements Engineering: A Preliminary Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3