The reads-from equivalence for the TSO and PSO memory models

Author:

Bui Truc Lam1,Chatterjee Krishnendu2ORCID,Gautam Tushar3,Pavlogiannis Andreas4ORCID,Toman Viktor2

Affiliation:

1. Comenius University Bratislava, Slovakia

2. IST Austria, Austria

3. IIT Bombay, India

4. Aarhus University, Denmark

Abstract

The verification of concurrent programs remains an open challenge due to the non-determinism in inter-process communication. One recurring algorithmic problem in this challenge is the consistency verification of concurrent executions. In particular, consistency verification under a reads-from map allows to compute the reads-from (RF) equivalence between concurrent traces, with direct applications to areas such as Stateless Model Checking (SMC). Importantly, the RF equivalence was recently shown to be coarser than the standard Mazurkiewicz equivalence, leading to impressive scalability improvements for SMC under SC (sequential consistency). However, for the relaxed memory models of TSO and PSO (total/partial store order), the algorithmic problem of deciding the RF equivalence, as well as its impact on SMC, has been elusive. In this work we solve the algorithmic problem of consistency verification for the TSO and PSO memory models given a reads-from map, denoted VTSO-rf and VPSO-rf, respectively. For an execution of n events over k threads and d variables, we establish novel bounds that scale as n k +1 for TSO and as n k +1 · min( n k 2 , 2 k · d ) for PSO. Moreover, based on our solution to these problems, we develop an SMC algorithm under TSO and PSO that uses the RF equivalence. The algorithm is exploration-optimal , in the sense that it is guaranteed to explore each class of the RF partitioning exactly once, and spends polynomial time per class when k is bounded. Finally, we implement all our algorithms in the SMC tool Nidhugg, and perform a large number of experiments over benchmarks from existing literature. Our experimental results show that our algorithms for VTSO-rf and VPSO-rf provide significant scalability improvements over standard alternatives. Moreover, when used for SMC, the RF partitioning is often much coarser than the standard Shasha-Snir partitioning for TSO/PSO, which yields a significant speedup in the model checking task.

Funder

Vienna Science and Technology Fund

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trace and Algebraic Semantics for Partial Store Order Memory Model;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

2. CSSTs: A Dynamic Data Structure for Partial Orders in Concurrent Execution Analysis;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

3. How Hard Is Weak-Memory Testing?;Proceedings of the ACM on Programming Languages;2024-01-05

4. Enhancing GenMC’s Usability and Performance;Lecture Notes in Computer Science;2024

5. Optimal Reads-From Consistency Checking for C11-Style Memory Models;Proceedings of the ACM on Programming Languages;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3