Domain-specific Named Entity Recognition with Document-Level Optimization

Author:

Wang Limin1,Li Shoushan1,Yan Qian1,Zhou Guodong1

Affiliation:

1. Soochow University, Natural Language Processing Lab, Suzhou, China

Abstract

Previous studies normally formulate named entity recognition (NER) as a sequence labeling task and optimize the solution in the sentence level. In this article, we propose a document-level optimization approach to NER and apply it in a domain-specific document-level NER task. As a baseline, we apply a state-of-the-art approach, i.e., long-short-term memory (LSTM), to perform word classification. On this basis, we define a global objective function with the obtained word classification results and achieve global optimization via Integer Linear Programming (ILP). Specifically, in the ILP-based approach, we propose four kinds of constraints, i.e., label transition, entity length, label consistency, and domain-specific regulation constraints, to incorporate various entity recognition knowledge in the document level. Empirical studies demonstrate the effectiveness of the proposed approach to domain-specific document-level NER.

Funder

National Key R8D Program of China

National Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3