Quasiconvex analysis of multivariate recurrence equations for backtracking algorithms

Author:

Eppstein David1

Affiliation:

1. University of California, Irvine, California

Abstract

We consider a class of multivariate recurrences frequently arising in the worst-case analysis of Davis-Putnam-style exponential-time backtracking algorithms for NP-hard problems. We describe a technique for proving asymptotic upper bounds on these recurrences, by using a suitable weight function to reduce the problem to that of solving univariate linear recurrences; show how to use quasiconvex programming to determine the weight function yielding the smallest upper bound; and prove that the resulting upper bounds are within a polynomial factor of the true asymptotics of the recurrence. We develop and implement a multiple-gradient descent algorithm for the resulting quasiconvex programs, using a real-number arithmetic package for guaranteed accuracy of the computed worst-case time bounds.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chapter 8. Fundaments of Branching Heuristics;Frontiers in Artificial Intelligence and Applications;2021-02-02

2. Analysis of Two-variable Recurrence Relations with Application to Parameterized Approximations;2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS);2020-11

3. Separate, Measure and Conquer;ACM Transactions on Algorithms;2017-10-31

4. Improved exact algorithms for mildly sparse instances of Max SAT;Theoretical Computer Science;2017-10

5. On the number of minimal separators in graphs;Journal of Graph Theory;2017-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3