Mitigating Tail Response Time of n-Tier Applications

Author:

Wang Qingyang1,Zhang Shungeng1ORCID,Kanemasa Yasuhiko2,Pu Calton3

Affiliation:

1. Louisiana State University--Baton Rouge, LA, USA

2. Fujitsu Laboratories Ltd., Kawasaki, Japan

3. Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Consistent low response time is essential for e-commerce due to intense competitive pressure. However, practitioners of web applications have often encountered the long-tail response time problem in cloud data centers as the system utilization reaches moderate levels (e.g., 50%). Our fine-grained measurements of an open source n-tier benchmark application (RUBBoS) show such long response times are often caused by Cross-tier Queue Overflow (CTQO). Our experiments reveal the CTQO is primarily created by the synchronous nature of RPC-style call/response inter-tier communications, which create strong inter-tier dependencies due to the request processing chain of classic n-tier applications composed of synchronous RPC/thread-based servers. We remove gradually the dependencies in n-tier applications by replacing the classic synchronous servers (e.g., Apache, Tomcat, and MySQL) with their corresponding event-driven asynchronous version (e.g., Nginx, XTomcat, and XMySQL) one-by-one. Our measurements with two application scenarios (virtual machine co-location and background monitoring interference) show that replacing a subset of asynchronous servers will shift the CTQO, without significant improvements in long-tail response time. Only when all the servers become asynchronous the CTQO is resolved. In synchronous n-tier applications, long-tail response times resulting from CTQO arise at utilization as low as 43%. On the other hand, the completely asynchronous n-tier system can disrupt CTQO and remove the long tail latency at utilization as high as 83%.

Funder

CISE?s CNS

an REU supplement

CRISP

SAVI/RCN

SaTC

Louisiana Board of Regents under grant

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference62 articles.

1. The Slashdot effect: An analysis of three Internet publications;Adler Stephen;Linux Gazette,1999

2. Data center TCP (DCTCP)

3. Apache Software Foundation. 2019. Java Non Blocking Connector (NIO). Retrieved from https://tomcat.apache.org/tomcat-7.0-doc/config/http.html. Apache Software Foundation. 2019. Java Non Blocking Connector (NIO). Retrieved from https://tomcat.apache.org/tomcat-7.0-doc/config/http.html.

4. Xen and the art of virtualization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3