Affiliation:
1. IMPACT Lab, Arizona State University
Abstract
Body area networks (BANs) are networks of medical devices implanted within or worn on the human body. Analysis and verification of BAN designs require (i) early feedback on the BAN design and (ii) high-confidence evaluation of BANs without requiring any hazardous, intrusive, and costly deployment. Any design of BAN further has to ensure (i) the safety of the human body, that is, limiting any undesirable side-effects (e.g., heat dissipation) of BAN operations (involving sensing, computation, and communication among the devices) on the human body, and (ii) the sustainability of the BAN operations, that is, the continuation of the operations under constrained resources (e.g., limited battery power in the devices) without requiring any redeployments. This article uses the Model Based Engineering (MBE) approach to perform design and analysis of BANs. In this regard, first, an abstract cyber-physical model of BANs, called BAN-CPS, is proposed that captures the undesirable side-effects of the medical devices (cyber) on the human body (physical); second, a design and analysis tool, named BAND-AiDe, is developed that allows specification of BAN-CPS using industry standard Abstract Architecture Description Language (AADL) and enables safety and sustainability analysis of BANs; and third, the applicability of BAND-AiDe is shown through a case study using both single and a network of medical devices for health monitoring applications.
Funder
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献