Reasoning with recursive loops under the PLP framework

Author:

Shen Yi-Dong1

Affiliation:

1. Chinese Academy of Sciences, Beijing, China

Abstract

Recursive loops in a logic program present a challenging problem to the PLP (Probabilistic Logic Programming) framework. On the one hand, they loop forever so that the PLP backward-chaining inferences would never stop. On the other hand, they may generate cyclic influences, which are disallowed in Bayesian networks. Therefore, in existing PLP approaches, logic programs with recursive loops are considered to be problematic and thus are excluded. In this article, we propose a novel solution to this problem by making use of recursive loops to build a stationary dynamic Bayesian network. We introduce a new PLP formalism, called a Bayesian knowledge base . It allows recursive loops and contains logic clauses of the form A ← A 1 ,…, A l , true , Context , Types , which naturally formulate the knowledge that the A i s have direct influences on A in the context Context under the type constraints Types . We use the well-founded model of a logic program to define the direct influence relation and apply SLG-resolution to compute the space of random variables together with their parental connections. This establishes a clear declarative semantics for a Bayesian knowledge base. We view a logic program with recursive loops as a special temporal model, where backward-chaining cycles of the form A ← … A ← … are interpreted as feedbacks. This extends existing PLP approaches, which mainly aim at (nontemporal) relational models.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Failure and Context Switching Using Logic-Based Stochastic Models;Journal of Computer Science and Technology;2010-07

2. Belief Logic Programming with Cyclic Dependencies;Web Reasoning and Rule Systems;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3