Sentiment Analysis of Sinhala News Comments

Author:

Ranathunga Surangika1ORCID,Liyanage Isuru Udara1

Affiliation:

1. Department of Computer Science and Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka

Abstract

Sinhala is a low-resource language, for which basic language and linguistic tools have not been properly defined. This affects the development of NLP-based end-user applications for Sinhala. Thus, when implementing NLP tools such as sentiment analyzers, we have to rely only on language-independent techniques. This article presents the use of such language-independent techniques in implementing a sentiment analysis system for Sinhala news comments. We demonstrate that for low-resource languages such as Sinhala, the use of recently introduced word embedding models as semantic features can compensate for the lack of well-developed language-specific linguistic or language resources, and text classification with acceptable accuracy is indeed possible using both traditional statistical classifiers and Deep Learning models. The developed classification models, a corpus of 8.9 million tokens extracted from Sinhala news articles and user comments, and Sinhala Word2Vec and fastText word embedding models are now available for public use; 9,048 news comments annotated with POSITIVE/NEGATIVE/NEUTRAL polarities have also been released.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3