Continuity and robustness of programs

Author:

Chaudhuri Swarat1,Gulwani Sumit2,Lublinerman Roberto3

Affiliation:

1. Rice University, Houston, TX

2. Microsoft Research, Redmond, WA

3. Pennsylvania State University, University Park, PA

Abstract

Computer scientists have long believed that software is different from physical systems in one fundamental way: while the latter have continuous dynamics, the former do not. In this paper, we argue that notions of continuity from mathematical analysis are relevant and interesting even for software. First, we demonstrate that many everyday programs are continuous (i.e., arbitrarily small changes to their inputs only cause arbitrarily small changes to their outputs) or Lipschitz continuous (i.e., when their inputs change, their outputs change at most proportionally). Second, we give an mostly-automatic framework for verifying that a program is continuous or Lipschitz, showing that traditional, discrete approaches to proving programs correct can be extended to reason about these properties. An immediate application of our analysis is in reasoning about the robustness of programs that execute on uncertain inputs. In the longer run, it raises hopes for a toolkit for reasoning about programs that freely combines logical and analytical mathematics.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualizing Game-Based Certificates for Hyperproperty Verification;Lecture Notes in Computer Science;2024-09-13

2. Ensuring Cyber-Physical System Stability in the Presence of Deadline Misses;2024 IEEE 3rd Real-Time and Intelligent Edge Computing Workshop (RAGE);2024-05-13

3. Adversities in Abstract Interpretation - Accommodating Robustness by Abstract Interpretation;ACM Transactions on Programming Languages and Systems;2024-04-27

4. Syntax-Guided Automated Program Repair for Hyperproperties;Lecture Notes in Computer Science;2024

5. Automated Software Verification of Hyperliveness;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3