Joint Credibility Estimation of News, User, and Publisher via Role-relational Graph Convolutional Networks

Author:

Shrestha Anu1ORCID,Duran Jason1ORCID,Spezzano Francesca1ORCID,Serra Edoardo1ORCID

Affiliation:

1. Boise State University, USA

Abstract

The presence of fake news on online social media is overwhelming and is responsible for having impacted several aspects of people’s lives, from health to politics, the economy, and response to natural disasters. Although significant effort has been made to mitigate fake news spread, current research focuses on single aspects of the problem, such as detecting fake news spreaders and classifying stories as either factual or fake. In this article, we propose a new method to exploit inter-relationships between stories, sources, and final users and integrate prior knowledge of these three entities to jointly estimate the credibility degree of each entity involved in the news ecosystem. Specifically, we develop a new graph convolutional network, namely, Role-Relational Graph Convolutional Networks (Role-RGCN), to learn, for each node type (or role), a unique node representation space and jointly connect the different representation spaces with edge relations. To test our proposed approach, we conducted an experimental evaluation on the state-of-the-art FakeNewsNet-Politifact dataset and a new dataset with ground truth on news credibility degrees we collected. Experimental results show a superior performance of our Role-RGCN proposed method at predicting the credibility degree of stories, sources, and users compared to state-of-the-art approaches and other baselines.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference74 articles.

1. News on Twitter: Consumed by most users and trusted by many;Mitchell Elisa Shearer, Amy;Pew Research Center,2021

2. Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. 2018. Automatic detection of fake news. In Proceedings of the 27th International Conference on Computational Linguistics. 3391–3401.

3. This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news;Horne Benjamin D.;Proceedings of the 2nd International Workshop on News and Public Opinion at ICWSM,2017

4. Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. 2018. A stylometric inquiry into hyperpartisan and fake news. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 231–240.

5. Information credibility on twitter

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3