Grid-free Monte Carlo for PDEs with spatially varying coefficients

Author:

Sawhney Rohan1ORCID,Seyb Dario2ORCID,Jarosz Wojciech2ORCID,Crane Keenan1ORCID

Affiliation:

1. Carnegie Mellon University

2. Dartmouth College

Abstract

Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend the walk on spheres (WoS) algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired by null-scattering yields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference128 articles.

1. The heterogeneous multiscale method

2. William Abikoff . 1981. The Uniformization Theorem. Amer. Math. Monthly 88, 8 ( 1981 ). William Abikoff. 1981. The Uniformization Theorem. Amer. Math. Monthly 88, 8 (1981).

3. Frédéric Alauzet and Adrien Loseille . 2016. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Computer-Aided Design 72 ( 2016 ). Frédéric Alauzet and Adrien Loseille. 2016. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Computer-Aided Design 72 (2016).

4. Robert Anderson , Julian Andrej , Andrew Barker , 2021 . MFEM: A modular finite element methods library. Computers & Mathematics with Applications 81 (2021). Robert Anderson, Julian Andrej, Andrew Barker, et al. 2021. MFEM: A modular finite element methods library. Computers & Mathematics with Applications 81 (2021).

5. Heterogeneous Subsurface Scattering Using the Finite Element Method;Arbree Adam;IEEE TVCG,2011

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing;ACM Transactions on Graphics;2024-08-09

2. Ray Tracing Harmonic Functions;ACM Transactions on Graphics;2024-07-19

3. Lightning-fast Method of Fundamental Solutions;ACM Transactions on Graphics;2024-07-19

4. Walkin’ Robin: Walk on Stars with Robin Boundary Conditions;ACM Transactions on Graphics;2024-07-19

5. A Differential Monte Carlo Solver For the Poisson Equation;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3