Dual octree graph networks for learning adaptive volumetric shape representations

Author:

Wang Peng-Shuai1,Liu Yang1,Tong Xin1

Affiliation:

1. Microsoft Research Asia, China

Abstract

We present an adaptive deep representation of volumetric fields of 3D shapes and an efficient approach to learn this deep representation for high-quality 3D shape reconstruction and auto-encoding. Our method encodes the volumetric field of a 3D shape with an adaptive feature volume organized by an octree and applies a compact multilayer perceptron network for mapping the features to the field value at each 3D position. An encoder-decoder network is designed to learn the adaptive feature volume based on the graph convolutions over the dual graph of octree nodes. The core of our network is a new graph convolution operator defined over a regular grid of features fused from irregular neighboring octree nodes at different levels, which not only reduces the computational and memory cost of the convolutions over irregular neighboring octree nodes, but also improves the performance of feature learning. Our method effectively encodes shape details, enables fast 3D shape reconstruction, and exhibits good generality for modeling 3D shapes out of training categories. We evaluate our method on a set of reconstruction tasks of 3D shapes and scenes and validate its superiority over other existing approaches. Our code, data, and trained models are available at https://wang-ps.github.io/dualocnn.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference78 articles.

1. Matan Atzmon and Yaron Lipman . 2020 . SAL: Sign agnostic learning of shapes from raw data. In CVPR. Matan Atzmon and Yaron Lipman. 2020. SAL: Sign agnostic learning of shapes from raw data. In CVPR.

2. Matan Atzmon and Yaron Lipman . 2021 . SALD: Sign Agnostic Learning with Derivatives. In ICLR. Matan Atzmon and Yaron Lipman. 2021. SALD: Sign Agnostic Learning with Derivatives. In ICLR.

3. Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner etal 2018. Relational inductive biases deep learning and graph networks. arXiv preprint arXiv:1806.01261 (2018). Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner et al. 2018. Relational inductive biases deep learning and graph networks. arXiv preprint arXiv:1806.01261 (2018).

4. Matthew Berger , Andrea Tagliasacchi , Lee M. Seversky , Pierre Alliez , Gaël Guennebaud , Joshua A. Levine , Andrei Sharf , and Claudio T . Silva . 2017 . A survey of surface reconstruction from point clouds. Comput. Graph. Forum 36, 1 (2017). Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guennebaud, Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. 2017. A survey of surface reconstruction from point clouds. Comput. Graph. Forum 36, 1 (2017).

5. Federica Bogo Javier Romero Gerard Pons-Moll and Michael J Black. 2017. Dynamic FAUST: Registering human bodies in motion. In CVPR. Federica Bogo Javier Romero Gerard Pons-Moll and Michael J Black. 2017. Dynamic FAUST: Registering human bodies in motion. In CVPR.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3