IDE al : efficient and precise alias-aware dataflow analysis

Author:

Späth Johannes1,Ali Karim2,Bodden Eric3

Affiliation:

1. Fraunhofer IEM, Germany

2. University of Alberta, Canada

3. University of Paderborn, Germany / Fraunhofer IEM, Germany

Abstract

Program analyses frequently track objects throughout a program, which requires reasoning about aliases. Most dataflow analysis frameworks, however, delegate the task of handling aliases to the analysis clients, which causes a number of problems. For instance, custom-made extensions for alias analysis are complex and cannot easily be reused. On the other hand, due to the complex interfaces involved, off-the-shelf alias analyses are hard to integrate precisely into clients. Lastly, for precision many clients require strong updates, and alias abstractions supporting strong updates are often relatively inefficient. In this paper, we present IDEal, an alias-aware extension to the framework for Interprocedural Distributive Environment (IDE) problems. IDEal relieves static-analysis authors completely of the burden of handling aliases by automatically resolving alias queries on-demand, both efficiently and precisely. IDEal supports a highly precise analysis using strong updates by resorting to an on-demand, flow-sensitive, and context-sensitive all-alias analysis. Yet, it achieves previously unseen efficiency by propagating aliases individually, creating highly reusable per-pointer summaries. We empirically evaluate IDEal by comparing TSf, a state-of-the-art typestate analysis, to TSal, an IDEal-based typestate analysis. Our experiments show that the individual propagation of aliases within IDEal enables TSal to propagate 10.4x fewer dataflow facts and analyze 10.3x fewer methods when compared to TSf. On the DaCapo benchmark suite, TSal is able to efficiently compute precise results.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

2. Symbol-Specific Sparsification of Interprocedural Distributive Environment Problems;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

3. Supporting Error Chains in Static Analysis for Precise Evaluation Results and Enhanced Usability;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12

4. Boosting the Performance of Multi-Solver IFDS Algorithms with Flow-Sensitivity Optimizations;2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2024-03-02

5. The Queen's Guard: A Secure Enforcement of Fine-grained Access Control In Distributed Data Analytics Platforms;Annual Computer Security Applications Conference;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3