Disco

Author:

Bugnion Edouard1,Devine Scott1,Govil Kinshuk1,Rosenblum Mendel1

Affiliation:

1. Stanford Univ., Stanford, CA

Abstract

In this article we examine the problem of extending modern operating systems to run efficiently on large-scale shared-memory multiprocessors without a large implementation effort. Our approach brings back an idea popular in the 1970s: virtual machine monitors. We use virtual machines to run multiple commodity operating systems on a scalable multiprocessor. This solution addresses many of the challenges facing the system software for these machines. We demonstrate our approach with a prototype called Disco that runs multiple copies of Silicon Graphics' IRIX operating system on a multiprocessor. Our experience shows that the overheads of the monitor are small and that the approach provides scalability as well as the ability to deal with the nonuniform memory access time of these systems. To reduce the memory overheads associated with running multiple operating systems, virtual machines transparently share major data structures such as the program code and the file system buffer cache. We use the distributed-system support of modern operating systems to export a partial single system image to the users. The overall solution achieves most of the benefits of operating systems customized for scalable multiprocessors, yet it can be achieved with a significantly smaller implementation effort.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference28 articles.

1. Hypervisor-based fault tolerance

2. CORMEN T. H. LEISERSON C. E. AND RIVEST R. L. 1990. Introduction to Algorithms. McGraw-Hill New York. CORMEN T. H. LEISERSON C. E. AND RIVEST R. L. 1990. Introduction to Algorithms. McGraw-Hill New York.

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3