Affiliation:
1. Northwestern University
2. Yahoo Research
Abstract
We present a new framework for solving optimization problems with a diseconomy of scale. In such problems, our goal is to minimize the cost of resources used to perform a certain task. The cost of resources grows superlinearly, as
x
q
,
q
≥ 1, with the amount
x
of resources used. We define a novel linear programming relaxation for such problems and then show that the integrality gap of the relaxation is
A
q
, where
A
q
is the
q
-th moment of the Poisson random variable with parameter 1. Using our framework, we obtain approximation algorithms for the Minimum Energy Efficient Routing, Minimum Degree Balanced Spanning Tree, Load Balancing on Unrelated Parallel Machines, and Unrelated Parallel Machine Scheduling with Nonlinear Functions of Completion Times problems. Our analysis relies on the decoupling inequality for nonnegative random variables. The inequality states that
║∑
i
=1
n
X
i
║
q
≤
C
q
║∑
i
=1
n
Y
i
║
q
,
where
X
i
are independent nonnegative random variables,
Y
i
are possibly dependent nonnegative random variables, and each
Y
i
has the same distribution as
X
i
. The inequality was proved by de la Peña in 1990. De la Peña, Ibragimov, and Sharakhmetov showed that
C
q
≤ 2 for
q
∈(1,2) and
C
q
≤
A
q
1/
q
for
q
≥ 2. We show that the optimal constant is
C
q
=
A
q
1/
q
for any
q
≥ 1. We then prove a more general inequality: For every convex function φ,
E[φ(∑
i
=1
n
X
i
)] ≤ E[φ (
P
∑
i
=1
n
Y
i
)],
and, for every
concave
function ψ,
E[ψ (∑
i
=1
n
X
i
)] ≥ E[ψ(P∑
i
=1
n
Y
i
)],
where
P
is a Poisson random variable with parameter 1 independent of the random variables
Y
i
.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献