Memory access scheduling

Author:

Rixner Scott1,Dally William J.2,Kapasi Ujval J.2,Mattson Peter2,Owens John D.2

Affiliation:

1. Electrical Engineering, Massachusetts Institute of Technology and Computer Systems Laboratory, Stanford University, Stanford, CA

2. Computer Systems Laboratory, Stanford University, Stanford, CA

Abstract

The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the “3-D” structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth.

Publisher

Association for Computing Machinery (ACM)

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing QoS in Multicore Systems with Heterogeneous Memory Configurations;Electronics;2024-09-03

2. Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study;IEEE Transactions on Computers;2024-07

3. BLESS: Bandwidth and Locality Enhanced SMEM Seeding Acceleration for DNA Sequencing;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

5. Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3