gSWORD: GPU-accelerated Sampling for Subgraph Counting

Author:

Ye Chang1ORCID,Li Yuchen1ORCID,Sun Shixuan2ORCID,Guo Wentian3ORCID

Affiliation:

1. Singapore Management University, Singapore, Singapore

2. Shanghai Jiao Tong University, Shanghai, China

3. Uniffilated, Sunnyvale, CA, USA

Abstract

Subgraph counting is a fundamental component for many downstream applications such as graph representation learning and query optimization.Since obtaining the exact count is often intractable,there have been a plethora of approximation methods on graph sampling techniques. Nonetheless, the state-of-the-art sampling methods still require massive samples to produce accurate approximations on large data graphs.We propose gSWORD, a GPU framework that leverages the massive parallelism of GPUs to accelerate iterative sampling algorithms for subgraph counting. Despite the embarrassingly parallel nature of the samples, there are unique challenges in accelerating subgraph counting due to its irregular computation logic. To address these challenges, we introduce two GPU-centric optimizations: (1) sample inheritance, enabling threads to inherit samples from neighboring threads to avoid idling, and (2) warp streaming, effectively distributing workloads among threads through a streaming process. Moreover, we propose a CPU-GPU co-processing pipeline that overlaps the sampling and enumeration processes to mitigate the underestimation issue. Experimental results demonstrate that deploying state-of-the-art sampling algorithms on gSWORD can perform millions of samples per second. The co-processing pipeline substantially improves the estimation accuracy in the cases where existing methods encounter severe underestimations with negligible overhead.

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. 2023. The technical report for gsword. https://github.com/Gibyeng/gsword/blob/main/report/report.pdf.

2. GuP: Fast Subgraph Matching by Guard-based Pruning;Arai Junya;PACMMOD,2023

3. Blair Archibald Fraser Dunlop Ruth Hoffmann Ciaran McCreesh Patrick Prosser and James Trimble. 2019. Sequential and parallel solution-biased search for subgraph algorithms. In CPAIOR. 20--38.

4. CECI

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. uBlade: Efficient Batch Processing for Uncertainty Graph Queries;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3